Teacher / Fahmy Sharaf

المادة : الكيمياء عدد صفحات الإحابة : (2)

دولة الإمارات العربية المتحدة مجلس أبو ظبي للتعليم

نموذج إجابة امتحان الصف الحادي عشر العلمي في مادة الكيمياء للعام الدراسي 2012 / 2013 م

12	11	10	9	8	7	6	5	4	3	2	1
ب	ب	7	Í	Í	ŗ	ح	7	7	ح	Í	ح

الدرجة	الفقرة			
1	بخار	(a		
<mark>3</mark>	$H_2O_{(S)}+$ طاقة حرارية $H_2O_{(I)}$	(b		
2	لأن هذه الطاقة تُستغل في التغلب على قوى التجاذب بين جزيئات الماء وتُخزن الطاقة في البخار كطاقة كامنة			
2 2	 i. قدر التبخير الفراغي ii. لأن قدر التبخير الفراغي يعمل على تقليل الضغط على سطح الماء بحيث يُصبح أقل من الضغط الجوي وبالتالي يتساوى ضغط بخار السائل مع الضغط الواقع على سطح السائل عند درجة حرارة أقل من 100°C فيغلى الماء عند هذه الدرجة. 			
0	تم حذف السؤال وتوزيع درجته على الجزئيات السابق $H_2O = 4.72 \ mol \ H_2O = 2.00 \ mol \ H_2O = 3.00 \ mol \ H_2O$ عدد مولات الماء	(e		
	$4.72 \; mol \; H_2O \; imes 40.79 \; kJ/mol = 192.53 \; kJ$			
3	$D = \frac{MP}{RT} = \frac{88 \ g \times 1 \ atm}{0.0821L.atm.mol^{-1}.K^{-1} \times (50 + 273)K} = 3.32 \ g/L$		14	
1	حتى يتساوى الضغط داخل وخارج المخبار ويصبح الضغط داخل المخبار مساوياً الضغط الجوي في ظروف التجربة.	(a		
3	$\begin{split} P_T &= P_{O_2} + P_{H_2O} \\ P_{O_2} &= 760 - 23.75 = 736.24 \ torr \\ P_{O_2} &= 736.24 \ torr \times \frac{1 \ atm}{760 \ torr} = 0.969 \ atm \\ \text{PV} &= \text{nRT} \\ n &= \frac{0.969 \ atm \times 0.250 \ L}{0.0821 L. atm. mol^{-1}. K^{-1} \times (25.0 + 273) K} = 9.9 \times 10^{-3} mol \ O_2 \end{split}$			
3	$KClO_3$ کتلهٔ $= 9.9 \times 10^{-3} mol \ O_2 \times \frac{2 mol \ KClO_3}{3 mol \ O_2} \times \frac{122.6 \ g \ KClO_3}{1 \ mol \ KClO_3} = 0.81 \ g \ KClO_3$	(c	15	
2	$(P_{\rm T})$ في هذه الحالة سسيكون ضغط الأكسجين في المخبار مساويا للضغط الجوي في ظروف النجربة $P_{(O_2)}=P_T=760~torr~ ightarrow P_{(O_2)}=760~torr~ ightarrow P_{(O_2)}=760~torr~ ightarrow 1.0~atm$ $P_{(O_2)}=P_T=760~torr~ ightarrow P_{(O_2)}=760~torr~ ightarrow 1.0~atm$ $P_{(O_2)}=P_T=760~torr~ ightarrow P_{(O_2)}=760~torr~ ightarrow 1.0~atm$ $P_{(O_2)}=P_T=760~torr~ ightarrow 1.0~atm$ $P_{(O_2)}=P_T=760~torr~ ightarrow 1.0~atm$ $P_{(O_2)}=P_T=1.0~torr~ ightarrow 1.0~atm$ $P_{(O_2)}=P_T=1.0~torr~ ightarrow 1.0~atm$	$P(P_T)$ في هذه الحالة سسيكون ضغط الأكسجين في المخبار مساويا للضغط الجوي في ظروف التجربة $P(O_2) = P_T = 760 \ torr \rightarrow P(O_2) = 760 \ torr imes \frac{1atm}{760 \ torr} = 1.0 \ atm$ $P(V = RT) \rightarrow V = \frac{nRT}{P} = \frac{9.9 \times 10^{-3} mol \ O_2 \times 0.0821 Latm. mol^{-1}.K^{-1} \times (25.0 + 273)K}{1.0 \ atm} = 0.242 \ L$		

Teacher / Fahmy Sharaf

Teacher / Fahmy Sharaf

نموذج إجابة امتحان الصف الحادي عشر العلمي في مادة الكيمياء للعام الدراسي 2012 / 2013 م

الدرجة	الفقرة		
	$PV = nRt \rightarrow n = \frac{PV}{RT}$		
1	قبل المزج $n_{H_2}=rac{P_{H_2}V_{H_2}}{RT}$, $n_{N_2}=rac{P_{N_2}V_{N_2}}{RT}$		
	بعد المزج $ ho_{total}V_{total}=n_{total}Rt=(rac{P_{H_2}V_{H_2}}{RT}+rac{P_{N_2}V_{N_2}}{RT})~RT$		
1	$P_{total}V_{total} = P_{H_2}V_{H_2} + P_{N_2}V_{N_2}$		
2	$P_{total} = \frac{P_{H_2}V_{H_2} + P_{N_2}V_{N_2}}{V_{total}} = \frac{(0.4 \text{ atm} \times 2L) + (0.4 \text{ atm} \times \times 1L)}{3L} = 0.4 \text{ atm}$		16
	(حل آخر) يقبل الحل باستخدام قانون بويل لحساب ضغط كلا من الهيدروجين ، والنيتروجين على حدة ثم استخدام قانون دالتون للضغوط الجزئية لحساب الضغط الكلي		
1	$3L$ فتح الصمام ينتشر كل من الغازين في الإنتفاخين ويصبح حجم كل منهما مساويا الحجم الكلي العنام فتح الصمام $P_{H_2} ightarrow P_1 V_1 = P_2 V_2 ightarrow P_2 = rac{P_1 V_1}{V_2} = rac{0.4}{3L} = rac{0.8}{3} atm$	بعد	
1	بعد فتح الصمام $P_{N_2} ightarrow P_1 V_1 = P_2 V_2 ightarrow P_2 = rac{P_1 V_1}{V_2} = rac{0.4}{3L} atm$		
2	بعد فتح الصمام $P_{total}= P_{H_2}+P_{N_2}= rac{0.8}{3}atm+rac{0.4}{3}atm=0.4~atm$		
1	$\frac{\text{rate}_{\text{H}_2}}{\text{rate}_{\text{X}}} = \sqrt{\frac{M_X}{M_{H_2}}}$		
2	$rac{1.84 imes 10^3 m/S}{311 \ m/s} = \sqrt{rac{M_X}{2.02 \ g/mol}} ightarrow 5.916 = \sqrt{rac{M_X}{2.02 \ g/mol}}$ (بتربيع الطرفين) $34.99 = rac{M_X}{2.02 \ g/mol}$		17
1	$M_x = 70.7 \text{ g/mol}$		
1	طارد للحرارة	.a	
1		.b	18
1 1	i يزاح الإتزان عكسيا نحو تكون غاز ${ m CO}_2$ (في اتجاه التسامي) ${ m ii}$.ii يزاح الإتزان عكسيا نحو تكون غاز ${ m CO}_2$ (في اتجاه التسامي)	.c	
1	وجود بحر الإلكترونات حرة الحركة والتي تُحيط بذرات الفلز	(a	
1) قوى تشتت لندن	(b	19
1		(c	
1	التساهمية الشبكية (وتقبل الإجابة: الأيونية)	(d	

Teacher / Fahmy Sharaf